

TIEIF

Achieve Compliance & Conformance with **Dam Buster Products**

NOTE: All Dam Buster[®] products are protected by various Australian and International Patents.

QUICK DESIGN GUIDE

Version 4.2 (31 March 2024)

Refer to the Product Technical Statement for the full design information

CERTIFIED PRODUCT (DAMBUSTERRAINHEAD)

For testing of the Overflow Performance of Dam Buster rectangular rainheads.

PRODUCT DESIGN HARDWARE AND BUILDING DAM BUSTER RAINHEAD

"The Architectural Choice"

www.dambuster.com.au

ltem	Page(s)
Compliance with the NCC	3
Design process	3
1 – Determination of the design rainfall intensity	4, 5
2 – Determine of the design flowrate for each box gutter	6
Example for calculating the catchment area and	
design flow rate for a box gutter	7
3 – Design of the box gutters	8
– Dam Buster box gutter design charts – 1 in 200 slope	9
– 1 in 150 slope	10
– 1 in 100 slope	11
– 1 in 40 slope	12
4 – Selection of Overflow device / DP combination:	
(a) Rainheads	13
(b) Sumps	14
(c) Side Outlets	15
5 – Selection of Upstream devices and design of associated	
box gutters	
(i) Elbows	16
(ii) Junctions	17
Design strategy for volume builder homes	18,19
Design charts for aerial downpipes	20
Design examples - Tee Side Outlet and Rainhead combination	22
- Free flow Sump	22
- Example including upstream devices	23
Dam Buster Products Names	24
Performance Solution Process & Documentation	25
Product Data Sheets	26-40

COMPLIANCE WITH THE NCC

Refer to the Dam Buster 'Evidence of Suitability' document for details of the compliance methods for the Dam Buster roof drainage system. If required, carry out the Performance Solution process, refer page 24 for a summary of this process.

DESIGN PROCESS USING DAM BUSTER BOX GUTTER DEVICES

- 1 Determination of design rainfall intensity
- 2 Determination of the design flow rate in L/s to each box gutter

Design of Overflow Devices

- Rainheads,
- Side Outlet & Rainhead combinations,
- Side Outlet & Sump combinations,
- Sumps,
- Continuous Sumps &
- Back-to-Back Sumps
- 3 Design of box gutters discharging to a Dam Buster device
- 4 Use the Dam Buster flow rate charts to select the device size and downpipe (DP) combinations

Design of Upstream devices

- 5(i) Design of Elbows (including box gutters) in accordance with the specific design procedure
- 5(ii) Design of Junctions (including box gutters) in accordance with the specific design procedure

<u>1 - Determination of the design rainfall intensity</u> = 1% AEP rainfall event ie. 100 year ARI for box gutters

Method 1

Look up the nearest area in Table D.1, AS/NZS 3500.3-2021

<u>NOTE</u> - 1% AEP = 100 year ARI ARI = Average recurrence interval AEP= Annual exceedance probability

Example below - 1%AEP = 187 mm /h = 10015*

* Note - 100 refers 100 years, I refers to Intensity, and 5 refers to 5 minutes = time of concentration Note- the maximum 5 min consecutive rainfall multiplied by 12 to convert to mm/hour

Australian location	Latitude	Longitude	5 % AEP (20 years ARI) intensity	1 % AEP (100 years ARI) intensity
	degrees	degrees	mm/h	mm/h
Melbourne:				
Craigieburn	37.59	144.94	128	186
Dandenong	37.99	145.21	133	181
Frankston	38.14	145.11	123	165
Hastings	38.31	145.19	112	145
Melbourne City	37.81	144.96	132	(187)
Oakleigh	37.89	145.09	132	182
Portsea	38.31	144.71	106	140
Sunbury	37.59	144.74	122	171
Sunshine	37.79	144.84	131	186
Warrandyte	37.74	145.21	126	172

FROM TABLE D1 OF AS/NZS 3500.3-2021

Method 2 Use the BOM's IFD website - MORE ACCURATE

a) Determine the Latitude & Longitude for the site address eg https://addressfinder.com.au/features/geocode/ EXAMPLE LAT = -37.718969

LONG = 145.120599

b) Use the BOM's Intensity-Frequency-Duration (IFD) website http://www.bom.gov.au/water/designRainfalls/revised-ifd/

Search	About the 2016 Design Rainfalls
Single Point	The 2016 design rainfalls provided here are:
Single Point	based on a more extensive database, with more than 30 years of additional rainfall data and data
Decimal degrees	from extra rainfall stations;
Latitude: -37.718969	 more accurate estimates, combining contemporary statistical analysis and techniques with an expanded rainfall database; and
Longitude: 145.120599	better estimates of the 2% and 1% annual exceedance probability design rainfalls than the interi
	2013 IFDs. extended to include the subdaily rare design rainfalls.
Degrees, Minutes, Seconds	By combining contemporary statistical analyses and techniques with an expanded database, the 2010
Easting, Northing, Zone	design rainfalls provide more accurate design rainfall estimates for Australia.
abel 🚯	Note: The 2016 IFDs replace both the ARR87 IFDs and the interim 2013 IFDs.

Location

Label: Not provided

Latitude: -37.719 [Nearest grid cell: 37.7125 (S)] Longitude:145.1206 [Nearest grid cell: 145.1125 (E)] Sydney Sydney Selbourne ©2022 MapData Services Pty Ltd (MDS), PSMA

IFD Design Rainfall Intensity (mm/h)

Issued: 29 May 2022

Rainfall intensity for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology

Table Cha	rt					(U	nit: (mm/h
		Annı	ial Exceed	ance Prob	ability (Al	EP)	
Duration	63.2%	50%#	20%*	10%	5%	2%	1%
1 min	91.3	102	142	174	210	263	311
2 min	77.1	85.6	116	141	167	207	243
3 min	69.4	77.2	105	128	152	189	222
4 min	63.5	70.9	97.4	118	141	176	207
5 min	58.8	65.8	90.9	111	133	166	195

SELECT

2 - Determination of the design flow rate for each box gutter

Design flow rate, $Q = \frac{CA \times 1\% AEP}{3600}$

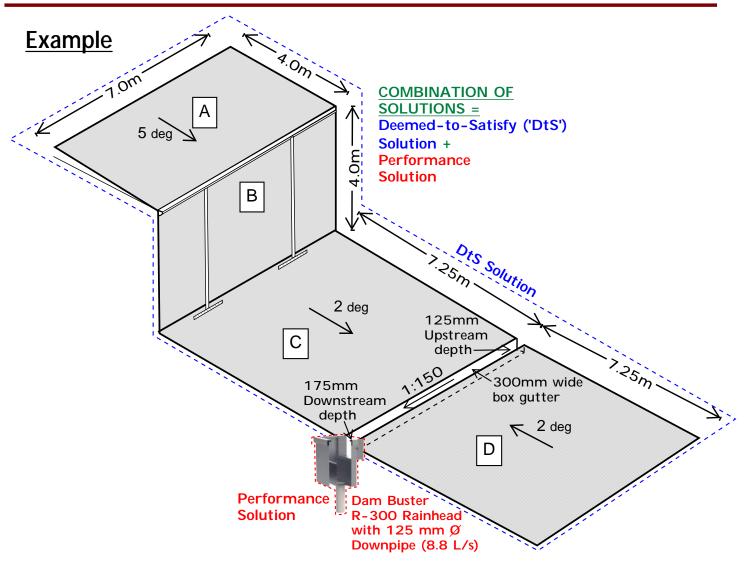
Q = Design flow rate in L/s

CA = Catchment area (m²) = Plan area + 1/2 x nett vertical area (from worst direction)

1%AEP = Design rainfall intensity (mm/h)

(3600 = number of seconds in an hour)

Example CA = $120m^2$ 1%AEP = 195mm/h Q= 120×195 = 6.5 L/s 3600


<u>NOTE</u>

Dam Buster adopts 3.0 L/s minimum for each box gutter i.e. if the flow rate is less than 3.0 L/s, assume 3.0L/s. This approach is in accordance with an AHSCA Research Foundation discussion paper by A/Prof Terry Lucke. HOWEVER, when designing an overflow device collecting discharge from more than one box gutter add up the actual flow rates to determine the design flow rate for the device.

Example

Dam Buster T Side Outlet and Rainhead combination LH gutter = 1.5 L/s, RH gutter = 5.0 L/s

=> Design the rainhead & DP for 6.5 L/s (not 3.0 + 5.0 = 8.0 L/s)

Catchment area = plan area + (1/2) x net vertical area

Roof A

Wall B

Wall area 'B' = $7.0 \times 4.0 = 28.0 \text{m}^2$ Catchment area = $1/2 \times 28.0 = 14.0 \text{m}^2$

Roofs C & D

Roof area = $2 \times 7 \times 7.25 = 101.5m2$ Note, the vertical component of roofs C & D cancel each other.

<u>Total Catchment area</u> = $29.1 + 14.0 + 101.5 = 144.6m^2$

<u>Design flow rate</u> Design flow rate, Q = (CA x 1% AEP) / 3600 = (144.6 x 195) / 3600 <u>= 7.83 litres / sec</u>

<u>SELECTION</u> - Dam Buster R-300 Rainhead with 125mm Diam. DP (Allowable flow rate = 8.8 L/s > 7.83 L/s)

3 - Design of box gutters

Design Notes

- 1) As all box gutters discharging to Dam Buster devices are 'free flow' in both the normal and overflow conditions, all box gutters can be design in accordance with Figure H.1 of AS/NZS 3500.3-2021.
- 2) However, Dam Buster has tabulated Figure H1 for each of the following 4 slopes:- 1 in 200, 1 in 150, 1 in 100 & 1 in 40
- 3) Dam Buster adopts a minimum design flow rate of 3.0L/s
- 4) The design depth is the minimum UPSTREAM depth and the box gutter depth must increase towards the downstream end as follows:

1 in 200 slope => 5 mm per m

- 1 in 150 slope => 7mm approx. per m (actually 6.7mm per m)
- 1 in 100 slope => 10mm approx. per m

1 in 40 slope* = > 25mm per m

- * Refer to the Product Technical Statement for the 1 in 40 design chart.
- 5) Whilst a slope of 1 in 200 is allowable, Dam Buster suggests a larger slope (eg 1 in 150 or 1 in 100) be adopted, particularly for:-
 - Reactive clay sites, as building movement may reduce falls
 - Timber framed roofs long term creep deflections may also result in loss of fall.

NOTE

Box gutters associated with Upstream devices (Elbows and Junctions) are designed slightly differently to box gutters discharging to overflow devices. Refer pages 15 & 16 for the design procedure.

3 - Design of box gutters (cont)

Design chart for box gutters discharging to Dam Buster devices

Design flow			Example	Box gu	tter widt	h (mm)				
rate L/s	200	250 🤇	300	350	400	450	500	550	600	
3.0	107	101	96	93	90	88	86	84	83	
3.5	113	105	100	96	93	91	89	87	85	
4.0	118	110	104	100	96	94	91	89	88	
4.5	122	114	107	103	99	96	94	92	90	
5.0	127	118	111	106	102	99	96	94	92	
5.5	131	121	114	109	105	101	99	96	94	
6.0	135	125 🗸	118	112	107	104	101	98	96	
6.5	140	129	121	115	110	106	103	101	98	
7.0	144	132	124	118	113	109	105	103	100	
7.5	148	135	127	120	115	111	107	105	102	
8.0	151	139	130	123	118	113	110	107	104	
8.5	155	142	133	125	120	115	112	108	106	
9.0	159	145	135	128	122	118	114	110	107	
9.5	162	148	138	131	125	120	116	112	109	
10.0	166	151	141	133	127	122	118	114	111	
10.5	170	154	144	135	129	124	119	116	113	
11.0		157	146	138	131	126	121	118	114	
11.5		160	149	140	133	128	123	119	116	
12.0		163	151	142	135	130	125	121	118	
12.5		166	154	145	137	132	127	123	119	
13.0		169	156	147	140	134	129	124	121	
13.5			159	149	142	135	130	126	122	
14.0			161	151	144	137	132	128	124	
14.5			164	154	146	139	134	129	125	
15.0			166	156	148	141	135	131	127	
15.5			168	158	149	143	137	132	128	
16.0				160	151	144	139	134	130	

Minimum UPSTREAM box gutter depth (mm) for **1 in 200**^{*} slope

* 1:200 slope equates to 5mm per m increasing depth over the length of the gutter

Example 300mm wide box gutter Flow rate = 6.0 L/s => Minimum UPSTREAM depth = 118mm Recommend rounding up to pagest 5mm => Adopt 120mm LIE

Recommend rounding up to nearest 5mm => <u>Adopt 120mm UPSTEAM depth</u>

3 - Design of box gutters (cont)

Design chart for box gutters discharging to Dam Buster devices

Design flow		E	xample	Box gu	tter widt	h (mm)			
rate L/s	200	250 🤇	300	350	400	450	500	550	600
3.0	104	98	94	90	88	86	84	82	81
3.5	109	102	97	94	91	88	87	85	83
4.0	113	106	101	97	94	91	89	87	86
4.5	118	110	104	100	96	94	91	89	88
5.0	122	113	107	103	99	96	94	92	90
5.5	126	117	/ 110	105	102	98	96	94	92
6.0	130	120 🤇	113	108	104	101	98	96	94
6.5	134	124	116	111	106	103	100	98	95
7.0	138	127	119	113	109	105	102	99	97
7.5	141	130	122	116	111	107	104	101	99
8.0	145	133	125	118	113	109	106	103	101
8.5	148	136	127	121	116	111	108	105	102
9.0	152	139	130	123	118	113	110	107	104
9.5	155	142	133	125	120	115	112	108	106
10.0	158	145	135	128	122	117	113	110	107
10.5	162	148	138	130	124	119	115	112	109
11.0		150	140	132	126	121	117	113	110
11.5		153	142	134	128	123	119	115	112
12.0		156	145	136	130	125	120	117	113
12.5		158	147	139	132	126	122	118	115
13.0		161	149	141	134	128	124	120	116
13.5			152	143	136	130	125	121	118
14.0			154	145	138	132	127	123	119
14.5			156	147	139	133	128	124	121
15.0			158	149	141	135	130	126	122
15.5			161	151	143	137	132	127	123
16.0				153	145	138	133	129	125

Minimum UPSTREAM box gutter depth (mm) for **1 in 150**^{*} slope

* 1:150 equates to 7mm approx. per m increasing depth over the length of the gutter

Example 300mm wide box gutter Flow rate = 6.0 L/s => Minimum UPSTREAM depth = 113mm Recommend rounding up to nearest 5mm => Adopt 115mm UPSTEAM depth

3 - Design of box gutters (cont)

Design chart for box gutters discharging to Dam Buster devices

	Example Box gutter width (mm)									
Design flow			xample			. ,				
rate L/s	200	250 🤇	300	350	400	450	500	550	600	
3.0	102	96	92	89	86	84	83	81	80	
3.5	106	100	95	92	89	87	85	83	82	
4.0	110	103	98	95	92	89	87	86	84	
4.5	115	107	102	98	94	92	90	88	86	
5.0	119	110	105	100	97	94	92	90	88	
5.5	122	114	108	103	99	96	94	92	90	
6.0	126	117 🤇	110	106	102	98	96	94	92	
6.5	130	120	113	108	104	101	98	96	94	
7.0	133	123	116	110	106	103	100	97	95	
7.5	137	126	119	113	108	105	102	99	97	
8.0	140	129	121	115	110	107	103	101	98	
8.5	143	132	124	117	113	109	105	102	100	
9.0	147	135	126	120	115	110	107	104	102	
9.5	150	137	129	122	117	112	109	106	103	
10.0	153	140	131	124	119	114	110	107	105	
10.5	156	143	133	126	120	116	112	109	106	
11.0		145	136	128	122	118	114	110	108	
11.5		148	138	130	124	119	115	112	109	
12.0		150	140	132	126	121	117	113	110	
12.5		153	142	134	128	123	119	115	112	
13.0		155	144	136	130	124	120	116	113	
13.5			147	138	131	126	122	118	115	
14.0			149	140	133	128	123	119	116	
14.5			151	142	135	129	125	121	117	
15.0			153	144	137	131	126	122	119	
15.5			155	146	138	132	128	123	120	
16.0				148	140	134	129	125	121	

Minimum UPSTREAM box gutter depth (mm) for **1 in 100**^{*} slope

* 1:100 slope equates to 10mm per m increasing depth over the length of the gutter

Example 300mm wide box gutter Flow rate = 6.0 L/s

=> Adopt 110mm UPSTEAM depth

Design flow			Example	Box gu	tter widt	h (mm)			
rate L/s	200	250	300	350	400	450	500	550	600
3.0	93	88	85	83	81	79	78	77	76
3.5	96	91	88	85	83	81	80	78	77
4.0	100	94	90	87	85	83	82	80	79
4.5	103	97	93	90	87	85	83	82	81
5.0	106	100	95	92	89	87	85	83	82
5.5	109	102	97	94	91	89	87	85	84
6.0	112	105 🤇	100	96	93	90	88	86	85
6.5	115	107	102	98	95	92	90	88	86
7.0	118	110	104	100	96	94	91	89	88
7.5	120	112	106	102	98	95	93	91	89
8.0	123	114	108	103	100	97	94	92	90
8.5	126	117	110	105	101	98	96	93	92
9.0	128	119	112	107	103	100	97	95	93
9.5	131	121	114	109	105	101	98	96	94
10.0	133	123	116	110	106	103	100	97	95
10.5	136	125	118	112	108	104	101	98	96
11.0		127	119	114	109	105	102	100	97
11.5		129	121	115	111	107	104	101	99
12.0		131	123	117	112	108	105	102	100
12.5		133	125	118	113	109	106	103	101
13.0		135	126	120	115	111	107	104	102
13.5			128	122	116	112	108	105	103
14.0			130	123	118	113	110	107	104
14.5			131	125	119	115	111	108	105
15.0			133	126	120	116	112	109	106
15.5			135	127	122	117	113	110	107
16.0				129	123	118	114	111	108

Design chart for box gutters discharging to Dam Buster devices

Minimum UPSTREAM box gutter depth (mm) for **1 in 40**^{*} slope

* 1:40 slope equates to **25mm per m** increasing depth over length of the gutter

Example 300mm wide box gutter Flow rate = 6.0 L/s => Adopt 100mm UPSTEAM depth

4 - Selection of overflow device / DP combination

Downpipe	Equivalent	[Dam Bu	ster Rain	head size ⁽¹)	
size	diameter	R-200	(R-300	R-400	R-500	R-600	
100 x 50	79	4.00 ⁽²⁾	4.00 ⁽³⁾				
80 diam.	80	4.00 ⁽²⁾	4.00 ⁽³⁾		Refer note (i	v)	
90 diam.	90	4.70	6.50				
100 x 75	97	5.00	7.30	8.00			
(100 diam.)	100	5.00	7.60	8.80	8.80		
100 x 100	112		8.80	12.0	12.0		
125 diam.	125		9.50	14.2	15.4	15.9	
150 x 100	137	Refer no	$t_{0}(y)$	15.8	16.0	16.0	
150 diam.	150			16.0	16.0	16.0	
Overflow (Capacity of	>16.0	>16.0	>16.0	>16.0	>16.0	
Devic	e (L/s)						
(1) Curved fronted rainheads CR-www have the same capacity as rectangular							
	eads cities determined cities adopted for					on	

a) Rainheads

Maximum permissible flow rates (litres / sec)

<u>NOTES</u>

- (i) Values in black have been determined in accordance with AS/NZS 3500.3
- (ii) Values in red were determined by testing by the AHSCA Research Foundation
- (iii) Values in blue were also determined by testing by the AHSCA Research Foundation. Note, AS/NZS 3500.3 permits the use of a 100x50 DP, however, no design charts are provided within the standard for this downpipe size, and consequently testing was required.
- (iv) For the R-400, R-500 & R-600, smaller downpipes than noted in the table may be used, provided the maximum permissible capacity is adopted as that for the next lowest rainhead size for which a value in the table is provided, for the same DP size. For example, for a 600 Rainhead, and 90 mm diam. DP, the maximum flow rate is 6.50 L/s.
- (v) These combinations are not possible
- (vi) Rectangular downpipes are considered to be 98% as effective as circular downpipes. Hence the equivalent diameter is based on 0.98 times the area of the rectangular downpipe.
- (vii) The capacities of STRETCHED rainheads are the same as for the non-stretched versions. For example, the capacity of a R-300-450 rainhead is the same as for the R-300 rainhead i.e. the stretched versions do <u>not</u> have additional capacity.

4 - Selection of overflow device / DP combination (cont)

b) Sumps

Normal	Overflow	Sump	Dam	Buster	^r Sump v	width (r	nm)
downpipe size	Downpipe size	Depth (mm)	200	300	400	500	600
90 diam.	90 diam.	75					
""	""	100	3.00				
"	"	125		3.30			
""	""	150	3.60				
90 diam.	100 diam.	75		3.00			
""	""	100	3.40				
""	""	125		4.60			
""	""	150	5.05		5.05		
""	""	200		5.90	5.90		
100 diam.	100 diam.	75		3.40			
""	""	125		5.70			
""	""	150	6.25		6.25	6.25	6.25
""	""	200		7.30	7.30	7.30	7.30
150 diam.	150 diam.	(150)			12.2	12.2	12.2
" "		200			16.0	16.0	16.0

Maximum permissible flow rates (litres / sec)

<u>Notes</u>

- 1) There is one exception to values in the table above. When used in conjunction with a Side Outlet, the maximum flow rate in the 200 Dam Buster Sump should be limited to 5.0 L/s.
- 2) denotes sump size not currently available as a standard size, or sump size and DP combination not permitted. Refer to available standard sizes in table below.
- 3) denotes sump and DP size not recommended, however, the allowable flow rates provided in the same row may be used.
- 4) Aerial overflow downpipes must be designed and installed at adequate grade to achieve the required flow rates. The minimum grades for critical flow rates specified in the design table (for PVC pipes) are provided in the table below for information purposes. These values have been determined from standard calculators based on the Colebrook-White equation. Note, these values apply to straight pipes with no additional bends than the bend below the sump. Where there are additional bends, obtain advice from a hydraulic engineer.

Pipe size	Flow rate	Min grade
90 diam	3.60	1 in 200
""""	4.60	1 in 150
100 diam	5.50	1 in 200
	7.30	1 in 120
150 diam	16.0	1 in 200

Refer also page 20 for an Aerial downpipe design chart.

5) **IMPORTANT** – AERIAL OVERFLOW PIPES MUST DISCHARGE VISIBLY TO ATMOSPHERE IN ORDER TO ALERT THE BUILDING MANAGER / BUILDING OWNER / BUILDING OCCUPANT THERE IS A BLOCKAGE IN THE SYSTEM.

	Dam Buster sump standard sizes										
Width Depth	200 mm	300 mm	400 mm	500 mm 600 m							
75 mm		300-75									
100 mm	200-100										
125 mm		300-125									
150 mm	200-150		400-150	500-150	600-150						
200 mm		300-200	400-200	500-200	600-200						

4 - Selection of overflow device / DP combination (cont)

c) Side Outlets

Apart from one exception, as noted below, no design is required for the Side Outlet itself. The Side Outlet is automatically designed when the rainhead or sump is designed. Note that Side Outlets are supplied in two interlocking, sliding components, and are adjustable to any (larger) box gutter width within the specified range for the Side Outlet. For example, a 300mm Side Outlet can be fitted to any box gutter width in the range 300mm to 450mm. Refer to the Product Technical Statement for allowable widths and limitations etc.

Exception

For the 200 Side Outlet and Sump combination (only), the flow rate must be limited to 5.0 L/s (the maximum allowable design flow rate is the lessor of the value in the Sump design table and 5.0 L/s).

5 - Selection of Upstream Devices

(i) Elbows

Elbows are designed for the total flow rate in the upstream and downstream box gutters. Refer notes below for the detailed design procedure.

Maximum Flow Rate (L/s)	Contraction Range for Upstream Gutter	Maximum box gutter depth at Entry (mm)	Drop within Elbow (mm)	Maximum box gutter depth at Exit (mm)
5.0	200	180	50	230
9.5	300 -> 200	215	60	265
16.0	400 -> 300	230	70	300
16.0	500 -> 300	230	70	300
16.0	600 -> 400	230	70	300
	Flow Rate (L/s) 5.0 9.5 16.0 16.0	Flow Rate (L/s) Range for Upstream Gutter 5.0 200 9.5 300 -> 200 16.0 400 -> 300 16.0 500 -> 300	Flow Rate (L/s)Range for Upstream Gutterbox gutter depth at Entry (mm)5.02001809.5300 -> 20021516.0400 -> 30023016.0500 -> 300230	Flow Rate (L/s)Range for Upstream Gutterbox gutter depth at Entry (mm)Elbow (mm) 5.0 200 180 50 9.5 $300 -> 200$ 215 60 16.0 $400 -> 300$ 230 70 16.0 $500 -> 300$ 230 70

<u>NOTES</u>

1. The maximum box gutter depth at Entry to the device is the maximum allowable downstream depth of the upstream box gutter.

- 2. The Elbow is trimmed to match the designed downstream depth of the upstream box gutter. Refer to the Installation Manual.
- 3. The upstream box gutter is designed (in accordance with figure H.1 of AS/NZS 3500.3) for a flow rate equivalent to the total catchment area of the upstream and downstream box gutters. It is not necessary to design the downstream box gutter.
- 4. All Elbows are supplied as 'Sliding' Elbows (i.e. supplied in two-piece / adjustable) by default. Sliding Elbows are able to contract for the upstream box gutter width within the specified range (all sizes except 200)
- 5. 'Fixed' Elbows are also for special larger volume orders (over 20 units), however fixed Elbows are not adjustable for the upstream box gutter.
- 6. ONLY THE UPSTREAM BOX GUTTER MAY BE CONTRACTED. THE DOWNSTREAM BOX GUTTER MAY <u>NOT</u> BE NARROWER THAN THE UPSTREAM BOX GUTTER.

5 - Selection the Upstream Devices (cont.)

(ii) Junctions

Junctions are also designed for the total flow in the upstream and downstream box gutters. Refer notes below for the detailed design procedure.

Device Size	Maximum Design Flow Rate (L/s)	Contraction Range for Upstream Gutter	Maximum box gutter depth at Entry (mm)	Drop within Junction (mm)	Maximum box gutter depth at Exit (mm)
JUN-200	5.0	200	180	50	230
JUN-300	9.5	300 -> 200	215	60	265
JUN-400	16.0	400 -> 300	230	70	300

<u>NOTES</u>

- 1. The maximum box gutter depth at Entry to the device is the maximum allowable downstream depth of the 'critical upstream box gutter' (refer note 3).
- 2. The Junction is trimmed to match the design downstream depth of the 'critical upstream box gutter'. Refer to the Installation Manual.
- 3. The upstream box gutter with the larger catchment area (the 'critical upstream box gutter') only is designed, and the opposite upstream box gutter ('non-critical box gutter') is sized to match the 'critical box gutter'. It is not necessary to design the downstream box gutter.
- 4. The 'critical box gutter' is designed (in accordance with figure H.1 of AS/NZS 3500.3) for the the catchment area to this gutter, plus any additional catchment area flowing directly into the downstream box gutter.
- 5. The total flow rate in all gutters must not exceed the Maximum Design Flow rate in the table.
- 6. All Junctions are supplied as 'Sliding' Junctions (i.e. supplied in two-piece / adjustable) by default. Sliding Junctions are able to contract for the upstream box gutter width within the specified range (all sizes except 200)
- 7. 'Fixed' Junctions are also for special larger volume orders (over 20 units), however fixed Junctions are not adjustable for the upstream box gutter.
- 8. ONLY THE UPSTREAM BOX GUTTERS MAY BE CONTRACTED. THE DOWNSTREAM BOX GUTTER MAY <u>NOT</u> BE NARROWER THAN THE UPSTREAMS BOX GUTTER.

Design strategy for volume builder homes

Rainfall	1%AEP	5% AEP	Box gutter	Eaves gutter
Category 'RC'	Box gutters	Eaves gutters	factor, Kb	factor, Ke
RC1	200mm /h	150mm /h	18	24
RC2	250mm /h	185 mm/h	14.4	19.5
RC3	300mm /h	225mm/h	12	16
RC4	350mm /h	260mm/h	10.3	13.8

NOTES

- 1. The 5% AEP is assumed to be 75% of the 1%AEP. This will cover most cases; however, this should be confirmed for each new suburb.
- 2. Refer to page 17 for an explanation of the Kb & Ke factors.
- 3. For homes with relatively small catchment areas, selection of the highest category for all proposed home locations (suburbs) may result in one roof drainage design only. For larger roof catchment areas, roof drainage designs for two rainfall categories only would typically be adequate, depending on the range of suburbs / locations proposed for that house.

Step A – Determine the rainfall intensity category for the property

• Determine the Rainfall Category for the suburb the house is being constructed in. This information would be determined once for each suburb using Methods 1 and / or 2 (see pages 4 and 5 for Methods 1 and 2).

Step B – Design the box gutters

- Determine the catchment area, 'CA', for each box gutter under consideration.
- Calculate the design flow rate 'Q', in L/s= CA / Kb, for example:
 - RC3, CA= 120m² => Q= 120/12 = 10 L/s
- Use the Dam Buster box gutter design charts to determine the minimum upstream depth for the selected fall for example:
 - 300mm wide box gutter, Q= 10 L/s, 1 in 150=> Upstream depth = 135mm
- Calculate the required downstream depth using the selected fall of the box gutter.
- <u>Note</u> where there are 2 or more inlet box gutters, increase box gutter depths as required to that they are the same at their downstream ends i.e., at the entry to the overflow device

Step C – Design the box gutter overflow devices & upstream devices

- For box gutter overflow devices, select the overflow device and DP combination based on the total flow rate for from all 'inlet' box gutters
 - For Rainheads, and Side Outlet & Rainhead combinations
 - Use the Rainhead Design Table to select the device and DP combination
 - o For Sumps
 - Use the Sump Design Table to select the device and DP combination
- For Upstream devices
 - o Elbows
 - Use the box gutter design charts to select the upstream depth of the inlet box gutter, based on the total flow rate to the inlet and outlet gutters
 - o Junctions
 - Use the box gutter design charts to select the upstream depth of the <u>larger</u> inlet box gutter, based on the total flow rate to the larger inlet box gutter, plus the outlet box gutter
 - Determine the downstream depth of the larger inlet box gutter using the fall
 - Set the downstream depth of the smaller inlet box gutter to be equal to the downstream depth of the larger box gutter

Design strategy for volume builder homes (cont.)

Explanation of Kb and Ke factors

In the design flow rate, 'Q', is calculated as follows (refer also Step 2, pages 6 and 7):

Q = <u>Catchment area ('CA') x AEP</u>, where-3600

Q = Flow rate in L/s

CA= Catchment are in m²

AEP = Design rainfall intensity in mm/h

If 1 mm of rain falls on 1 m² of roof, that equates to 1 Litre of rainfall.

However, the rainfall intensity is provided in mm/h i.e. mm/3600 seconds. Hence, if we calculate the flow rate based on the AEP, we would get a result in mm/h. So we need to divide by 3600 to convert from mm/hour to mm/second.

The equate above can be re-written as:

```
Q = <u>Catchment area ('CA')</u>
(3600 / AEP)
```

To simply this, the equation can be rewritten as-

Q = <u>CA</u> where K= 3600/AEP **K**

However, the values of k are different for box gutters (which are designed based on the 1% AEP) and eaves gutters (which are designed based on the 5% AEP).

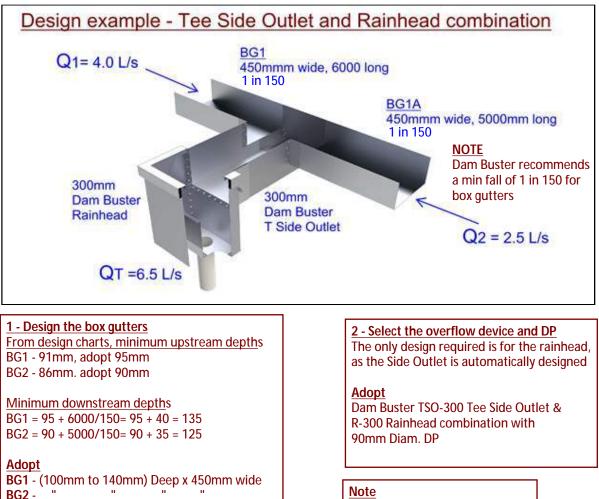
Hence the K factors for box gutter and eaves gutters are determined as follows:

```
<u>Box Gutters</u>
Kb = 3600 / 1% AEP
```

<u>Eaves Gutters</u> Ke = 3600 / 5% AEP

Refer to AS/NZS 3500.3-2021 for the design method for eaves gutters.

Design chart for aerial downpipes


Clana		Pipe di	ameter	
Slope	90mm	100mm	150mm	225mm
1 in 200	4.14	5.49	16.2	47.5
1 in 190	4.26	5.65	16.6	48.9
1 in 180	4.39	5.82	17.1	50.3
1 in 170	4.53	6.00	17.7	51.9
1 in 160	4.68	6.21	18.3	53.7
1 in 150	4.85	6.43	18.9	55.6
1 in 140	5.04	6.68	19.6	57.7
1 in 130	5.25	6.96	20.5	60.1
1 in 120	5.49	7.27	21.4	62.7
1 in 110	5.76	7.63	22.4	65.7
1 in 100	6.07	8.04	23.6	69.2
1 in 90	6.43	8.52	25.0	73.3
1 in 80	6.86	9.09	26.7	78.0
1 in 70	7.38	9.77	28.7	83.9
1 in 60	8.03	10.6	31.2	91.1
1 in 50	8.87	11.7	34.4	100.4

Maximum flow rates* (L/s)

* Based on a standard Colebrook-White calculator

<u>Note</u>

The table assumes there are no additional bends in the aerial downpipe other than the bend below the sump. Where there are additional bends, which will result in energy losses, advice should be obtained from a hydraulic engineer.

<u>Note</u> - 140mm is the standard height of a 300mm Side Outlet All box gutters are designed for a minimum flow rate, Qmin =3 L/s

Downpipe	Equivalent	[Dam Bus	ter Rainh	nead size ⁽¹)		
size	diameter	R-200	R-300	R-400	R-500	R-600		
100 x 50	79	4.00 ⁽²⁾	4.00 ⁽³⁾					
80 diam.	80	4.00 ⁽²⁾	4.00 ⁽³⁾		Refer note (i	v)		
90 diam.	90	4.70	6.50					
100 x 75	97	5.00	7.30	8.00				
100 diam.	100	5.00	7.60	8.80	8.80			
100 x 100	112		8.80	12.0	12.0			
125 diam.	125		9.50	14.2	15.4	15.9		
150 x 100	137	Refer note (v)		15.8	16.0	16.0		
150 diam.	150			16.0	16.0	16.0		
Overflow (Capacity of	>16.0	>16.0	>16.0	>16.0	>16.0		
Devic	e (L/s)							
(1) Curved fronted rainheads CR-www have the same capacity as rectangular								
(2) Capa								

Maximum permissible flow rates (litres / sec)

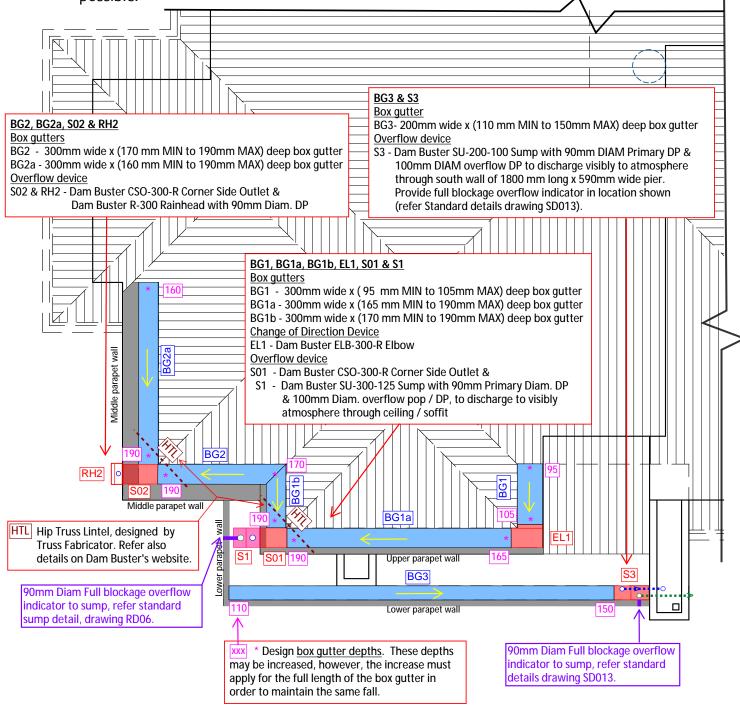
<u>1 - Design the box gutter</u> <u>From design charts, minimum upstream depth:</u> BG1 - 106mm say 110mm

Downstream depth BG1 = 110 + 8000/150= 110 + 55= 165mm say 170mm <u>Adopt</u> BG1 - (110mm to 170mm) deep x 400mm wide

2 - Select the overflow device and DP

<u>Adopt</u>

Dam Buster SU-400-200 Sump with 100mm Primary DP & 100mm Aerial Overflow DP, 1 in 140* min * Refer design chart for aerial overflow pipes, page 19


Normal	Overflow	Sump	Dam	n Buster	[·] Sump	width (I	nm)
downpipe size	Downpipe size	Depth (mm)	200	300	400	500	600
90 diam.	90 diam.	100	3.00				
"""	" "	125					5
""	" "	150	3.60		Refe	er Note 4	
90 diam.	100 diam.	100	3.40				
" "	" "	125		4.60			
" "	" "	150	5.05		5.05		
" "	" "	200		5.90	5.90		
100 diam.	100 diam.	75		3.40			
""	" "	125		5.70			
""	""	150	6.25		6.25	6.25	6.25
""	""(200		7.30 <	7.30	7.30	7.30
150 diam.	150 diam.	150	Refer N	lata 5	12.2	12.2	12.2
" "	" "	200			16.0	16.0	16.0

Maximum permissible flow rates (litres / sec)

	Dam Buster sump standard sizes										
Width Depth	200 mm 300 mm 400 mm 500 mm 600 m										
75 mm		300-75									
100 mm	200-100										
125 mm		300-125									
150 mm	200-150		400-150	500-150	600-150						
200 mm		300-200 🔇	400-200	500-200	600-200						

Design example including upstream devices

The example below includes one 'upstream' device, a Dam Buster Elbow. Careful coordination is required between all box gutter depths. In this case, the maximum box gutter depth was determined by commencing at the upstream end of BG1 and then working towards the downstream end BG1a. The upstream depth of BG1b was then set by working upstream after matching the downstream depth of BG1b with the downstream depth of BG1a. Then the downstream depth of BG2 was calculated and finally upstream depth BG2a was determined. Designs are unlikely to be more complicated than this one and it should be noted that determining a compliant solution using the DtS devices in AS/NZS 3500.3, whilst fitting within the architectural constraints, would not have been possible.

Dam Buster Product Names

Label	Name				Sizes		
	·		Rainhead	s			
R-www	Rainhead		R-200	R-300	R-400	R-500	R-600
CR-www	Curved Rainhead		CR-200	CR-300	CR-400	CR-500	CR-600
R-www-F	Flat Back Rainhead		R-200-F	R-300-F	R-400-F	R-500-F	R-600-F
CR-www-F	Flat Back Curved Rainhead		CR-200-F	CR-300-F	CR-400-F	CR-500-F	CR-600-F
			Stretched Rain	heads			
R-200-www	Stretched R-200 Rain	head ⁽¹⁾	R-200	-300			
R-200-www-F	Stretched FB R-200 R	ainhead ⁽¹⁾	R-200-	300-F			
R-300-www	Stretched R-300 Rain	head ⁽¹⁾	R-300-350	R-300-380	R-300-400	R-300-450	R-300-500
R-300-www-F	Stretched FB R-300 R	ainhead ⁽¹⁾	R-300-350-F	R-300-380-F	R-300-400-F	R-300-450-F	R-300-500-F
			Sumps				
SU-www-ddd	Sump		200	300	400	500	600
		75		SU-300-75			
		100	SU-200-100				
		125		SU-300-125			
		150	SU-200-150		SU-400-150	SU-500-150	SU-600-150
		200		SU-300-200	SU-400-200	SU-500-200	SU-600-200
			Side Outle	ts		•	
TSO-www	T Side Outlet		TSO-200	TSO-300	TSO-400	n/a	n/a
ESO-www-L	End Side Outlet, LH		ESO-200-L	ESO-300-L	ESO-400-L	n/a	n/a
ESO-www-R	End Side Outlet, RH		ESO-200-R	ESO-300-R	ESO-400-R	n/a	n/a
CSO-www-L	Corner Side Outlet, Li	4	CSO-200-L	CSO-300-L	CSO-400-L	n/a	n/a
CSO-www-R	Corner Side Outlet, R	Н	CSO-200-R	CSO-300-R	CSO-400-R	n/a	n/a
XSO-www	Cruciform Side Outlet	:	XSO-200	XSO-300	XSO-400	n/a	n/a
			Elbows				
ELB-www-L	Elbow, LH		ELB-200-L	ELB-300-L	ELB-400-L	ELB-500-L	ELB-600-L
ELB-www-R	Elbow, RH		ELB-200-R	ELB-300-R	ELB-400-R	ELB-500-R	ELB-600-R
			Junctions	5			
TJN-www	Tee Junction		TJN-200	TJN-300	TJN-400	n/a	n/a
CJN-www-L	Corner Junction, LH		CJN-200-L	CJN-300-L	CJN-400-L	n/a	n/a
CJN-www-R	Corner Junction, RH		CJN-200-R	CJN-300-R	CJN-400-R	n/a	n/a
			Ancillary Proc	ducts			
BGA-www-WWW	Box Gutter Adaptor		BGA-200-	-300			
					BGA-300-500		
						BGA-400-600	
CL-www	Chute Lid		CL-200	CL-300	CL-400	CL-500	CL-600
SC-www	Sump cover		SC-200	SC-300	SC-400	SC-500	SC-600

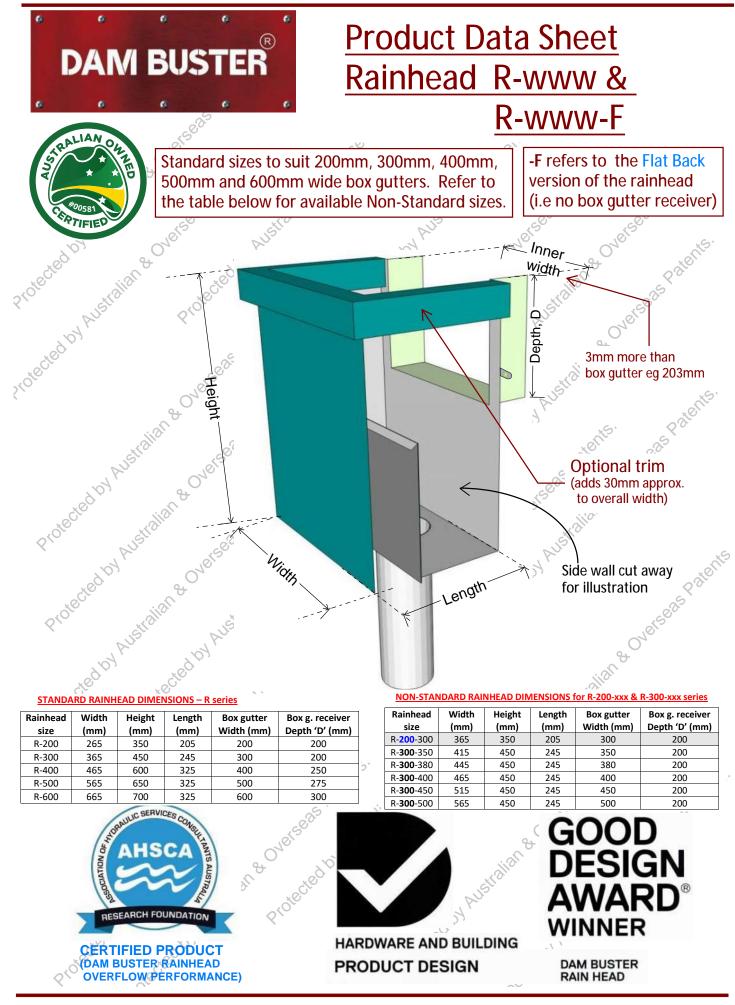
<u>NOTES</u>

- 1. The R-300 is also available in a number of (non-standard) widths between up to 500mm wide, in a 'stretched' form such that the width of the rainhead (and box gutter receiver) in increased, but all other dimensions remained the same. The 'stretched' rainheads currently available are R-300-**350**, R-300-**380**, R-300-**400**, R-300-**450** & R-300-**500**. Refer also to the Product Data Sheets. Other 'non-standard' sizes may become available in the future, however Custom rainhead sizes are also available, contact Dam Buster for further information. The R-200 is available as one stretched width, R-200-**300**.
- 2. All Side Outlets and Elbows are supplied as 'Sliding' (i.e. two-piece / adjustable). However, these products can also be supplied as 'Fixed' (i.e. one-piece) for special larger volume orders (over 20 units).

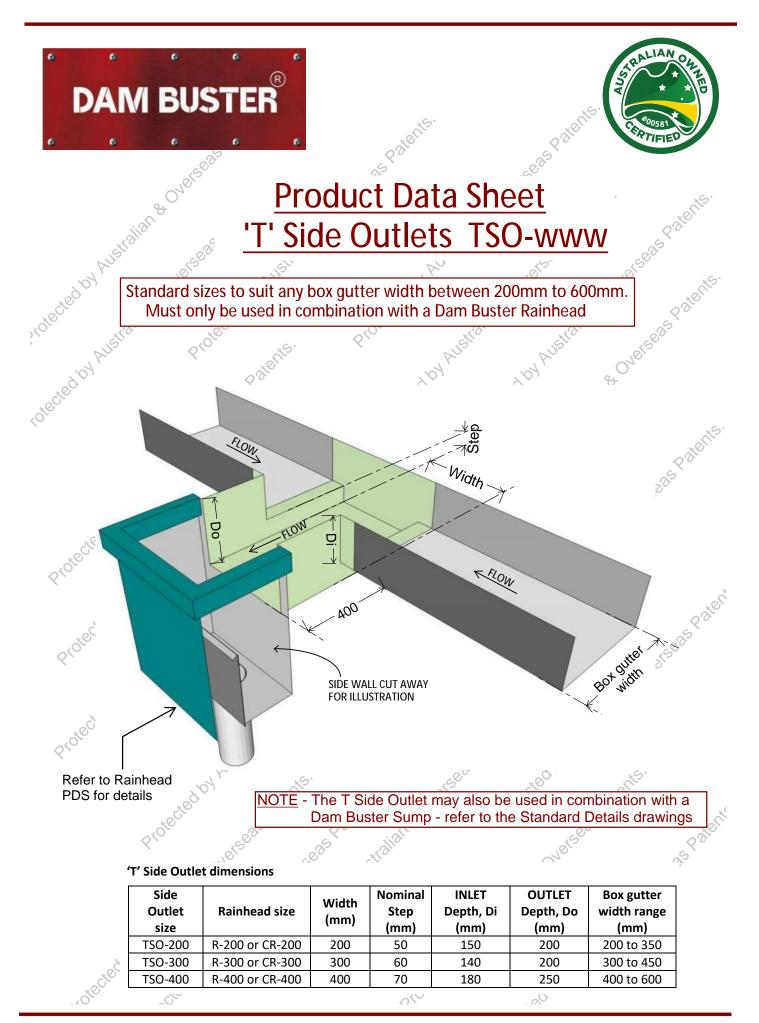
PERFORMANCE SOLUTION PROCESS & DOCUMENTATION

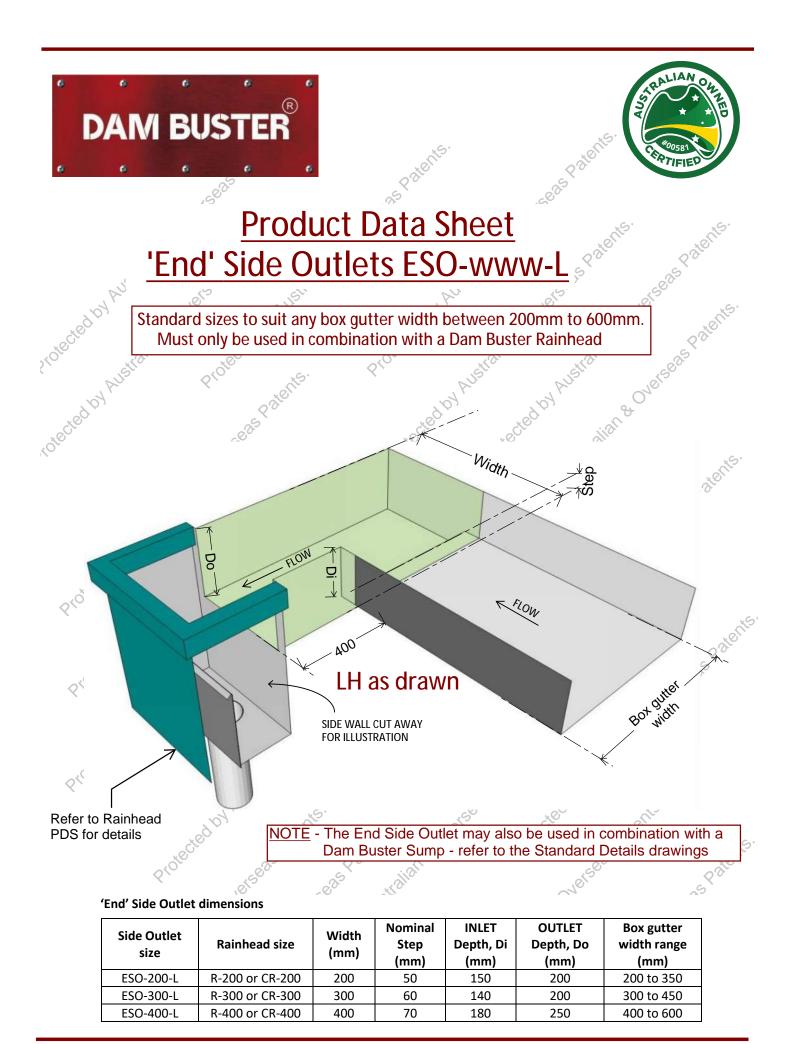
Required when the Regulatory Authority or Building Surveyor / Building Certifier does not accept Dam Buster products as being Deemed-to-Satisfy by Expert Judgement.

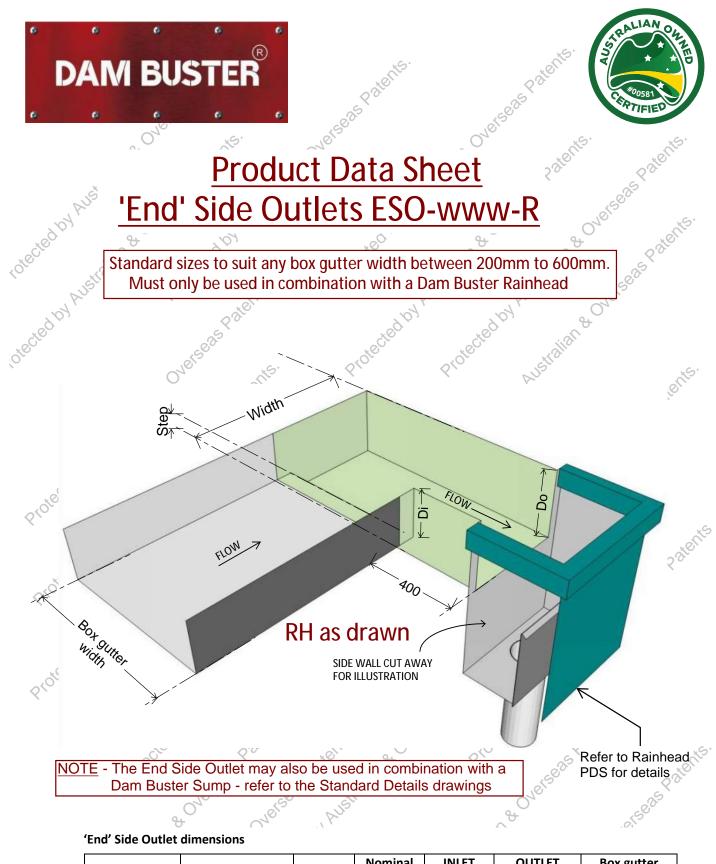
STEP A - Fill out the job details for the PBDB (Performance Based Design Brief) and have all 'key stakeholders' sign it.

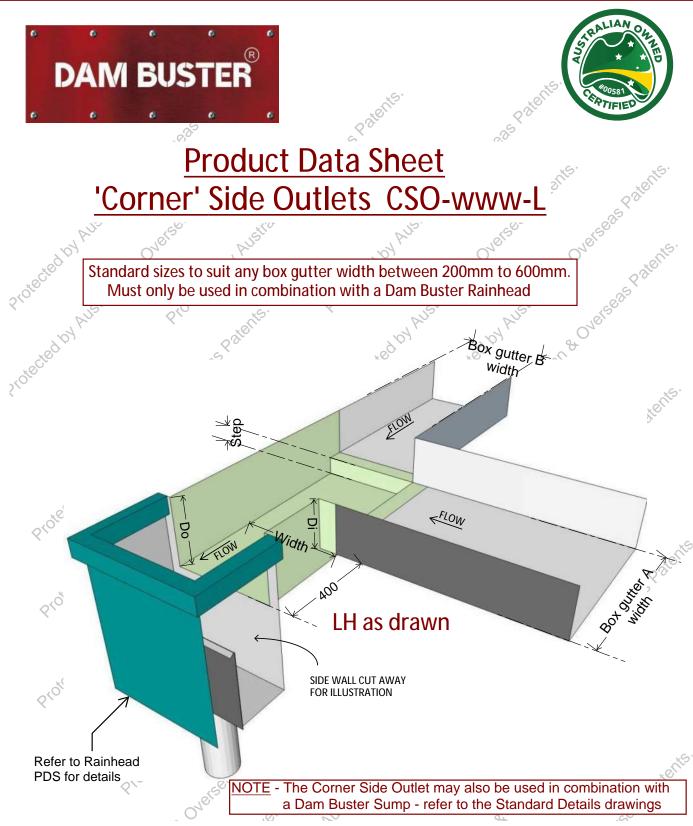

<u>Note</u> - Refer to the Dam Buster website for a PBDB template.


STEP B - Document the proposed solution

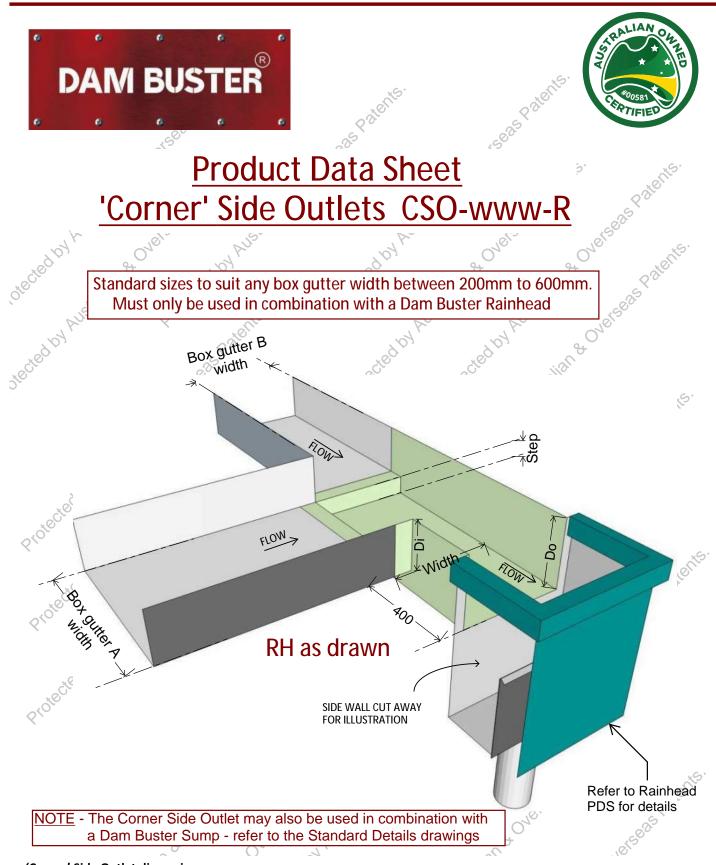

STEP C - Prepare the Final Report and attach the signed PBDB.


- <u>Note</u> there is a Final Report template on the Dam Buster website for each of the following (which have similar, but different, Performance Requirements):-
 - BCA Vol 1
 - BCA Vol 2
 - PCA (VIC)
 - PCA (TAS)

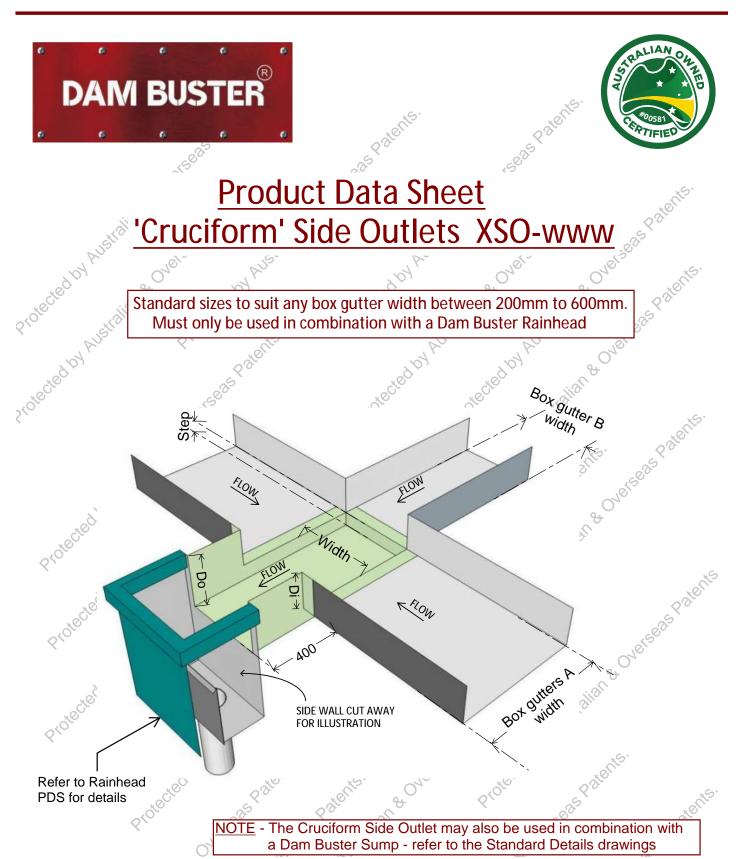

The documentation (drawings / sketches and computations) must be attached to the Final report.



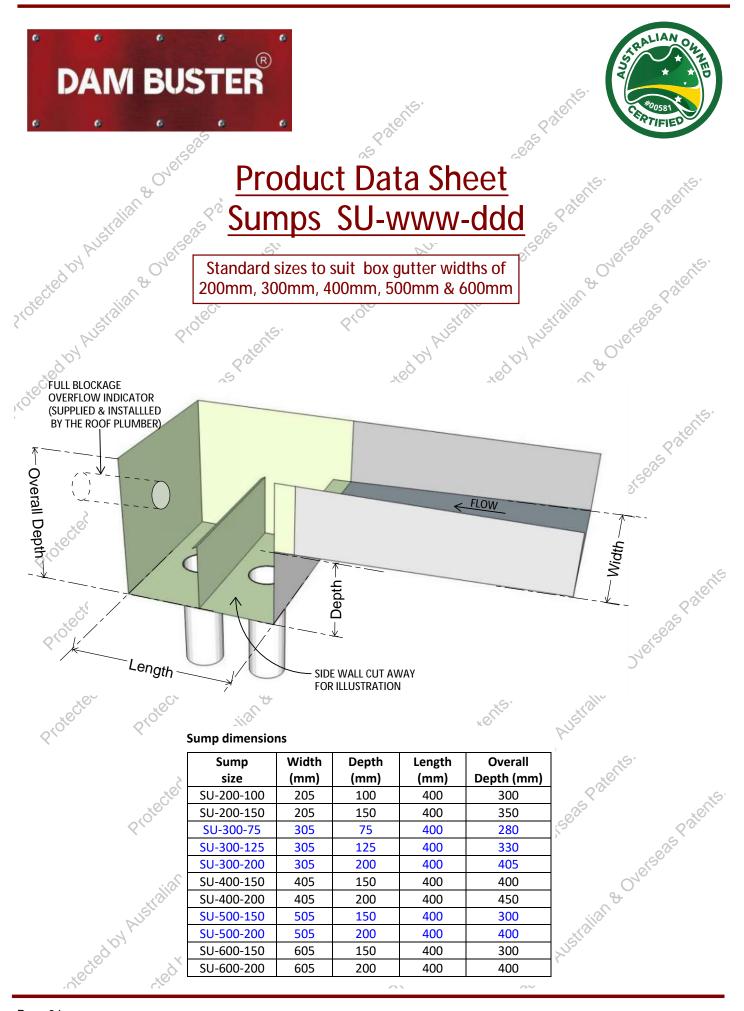
	Side Outlet size	Rainhead size	Width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter width range (mm)
	ESO-200- R	R-200 or CR-200	200	50	150	200	200 to 350
×0	ESO-300- R	R-300 or CR-300	300	60	140	200	300 to 450
0	ESO-400- R	R-400 or CR-400	400	70	180	250	400 to 600
	0				Ň	~	

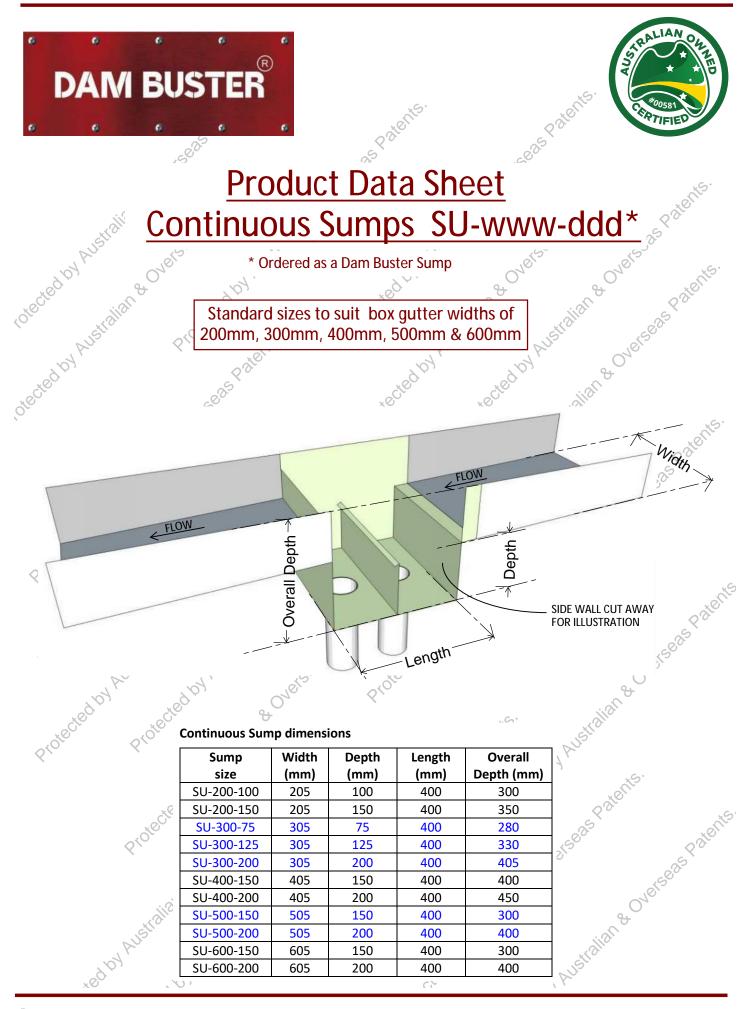

Q

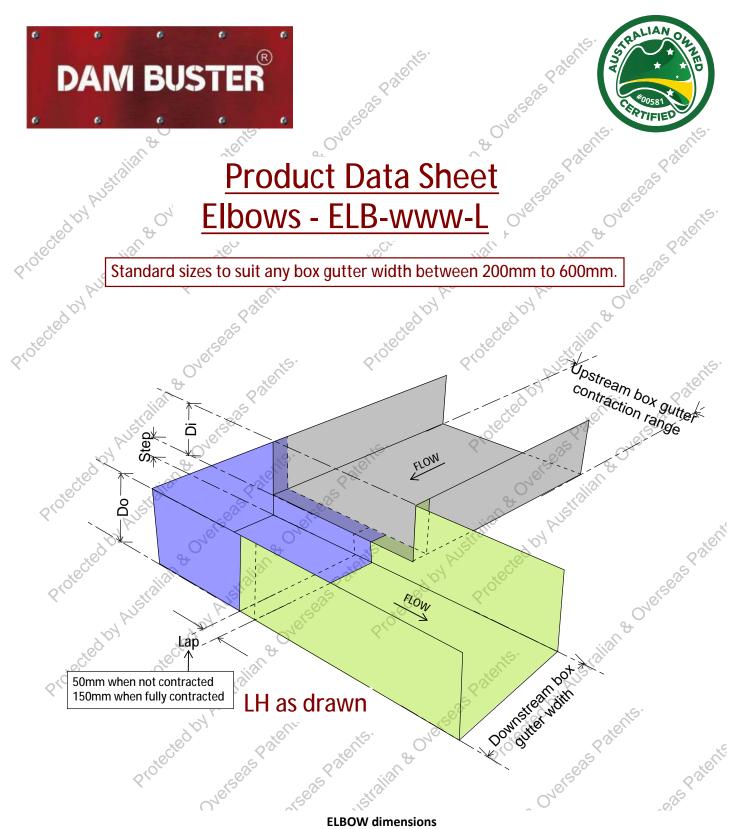
'Corner' Side Outlet dimensions


Side Outlet Size	Rainhead size	Width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A width range (mm)	Box gutter B width (mm)
CSO-200-L	R-200 or CR-200	200	50	150	200	200 to 350	200
CSO-300-L	R-300 or CR-300	300	60	140	200	300 to 450	300
CSO-400-L	R-400 or CR-400	400	70	180	250	400 to 600	400
×	.0 ²			Ŧ	. e ^U		
	8	V	/ww.dambuste	er.com.au			

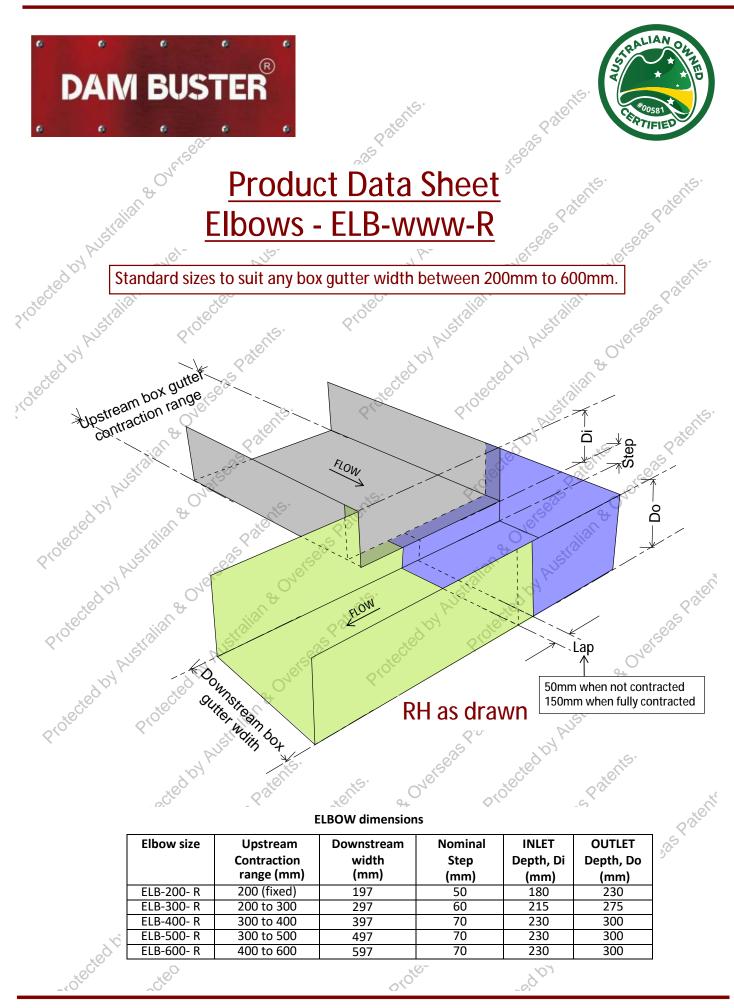
www.dambuster.com.au

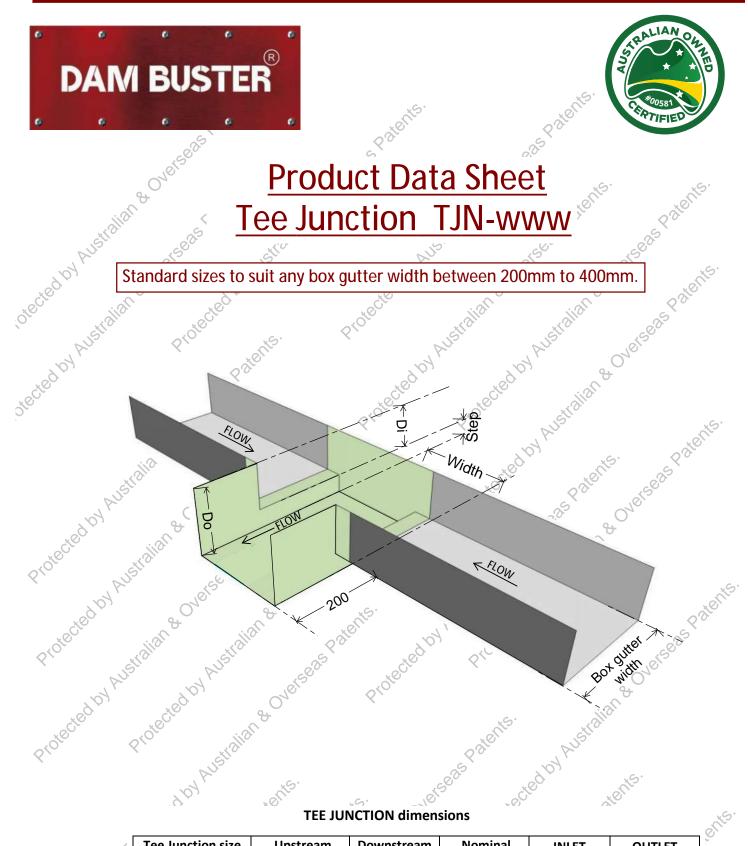

'Corner'	Side	Outlet	dimensions
----------	------	--------	------------

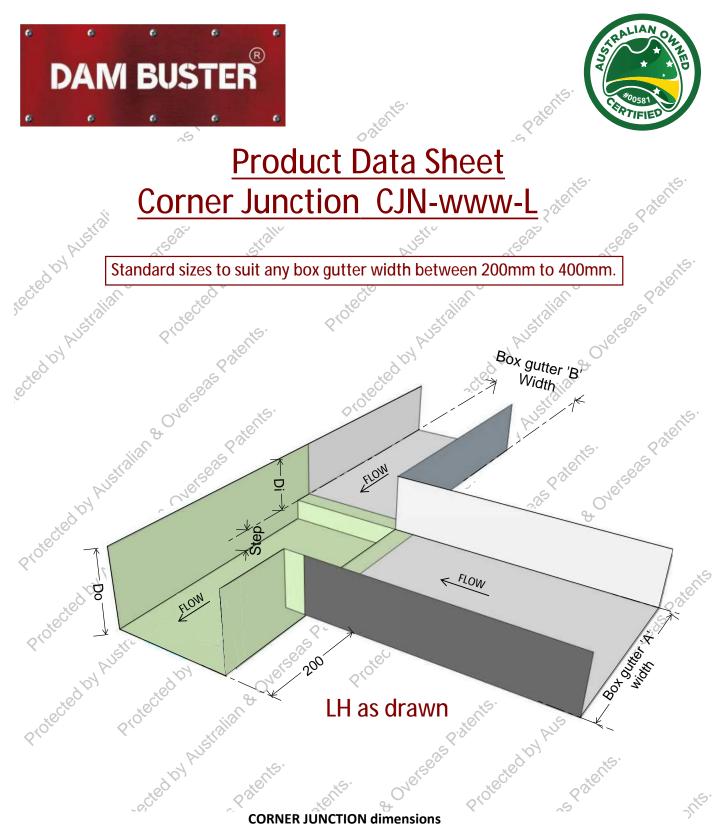

Side Outlet Size	Rainhead size	Width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A width range (mm)	Box gutter B width (mm)
CSO-200- R	R-200 or CR-200	200	50	150	200	200 to 350	200
CSO-300- R	R-300 or CR-300	300	60	140	200	300 to 450	300
CSO-400- R	R-400 or CR-400	400	70	180	250	400 to 600	400

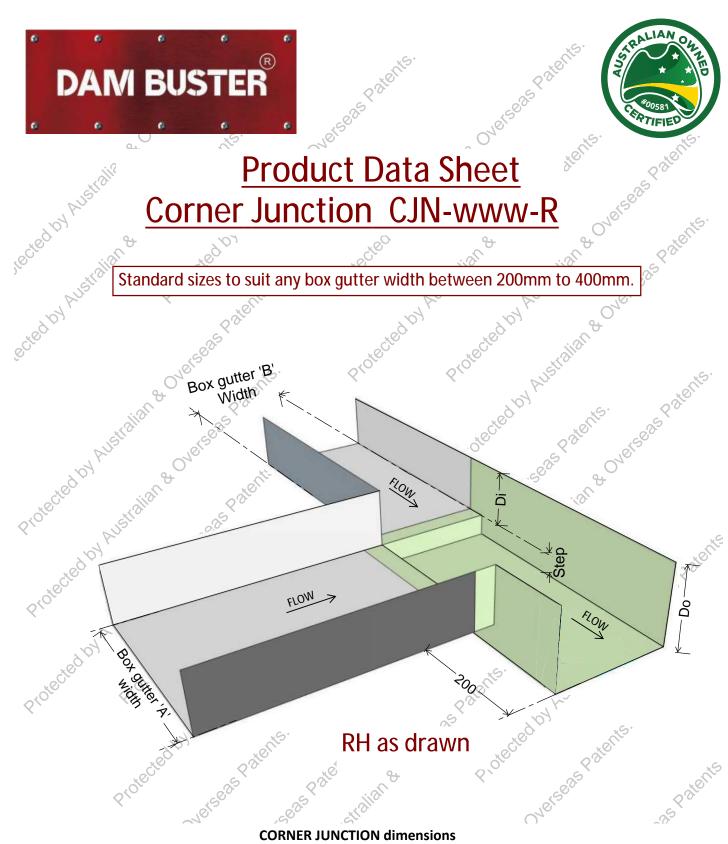


'Cruciform' Side Outlet dimensions


Side Outlet Size	Rainhead size	Width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutters A width range (mm)	Box gutters B width range (mm)
XSO-200	R-200 or CR-200	200	50	150	200	200 to 350	200
XSO-300	R-300 or CR-300	300	60	140	200	300 to 450	300
XSO-400	R-400 or CR-400	400	70	180	250	400 to 600	400
×				-	C		




7	Elbow size	Upstream Contraction range (mm)	Downstream width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)
to,	ELB-200- L	200 (fixed)	197	50	180	230
×°O	ELB-300- L	200 to 300	297	60	215	275
Tecteo,	ELB-400- L	300 to 400	397	70	230	300
010	ELB-500- L	300 to 500	497	70	230	300
Y'	ELB-600- L	400 to 600	597	70	230	300
2				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		


TEE JUNCTION dimensions

<	Tee Junction size Upstream Contraction range (mm)		Downstream Nominal width Step (mm) (mm)		INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	
	TJN-200	200 (fixed)	197	50	180	230	
	TJN-300	200 to 300	297	60	215	275	
7	TJN-400	300 to 400	397	70	230	300	

(CORNER	JUNCTION	dimensions	

Corner Junction Size	Downstream width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A contraction range (mm)	Box gutter B width (mm)
CJN-200-L	197	50	180	230	200	200
CJN-300-L	297	60	215	275	200 to 300	300
CJN-400-L	397	70	230	300	300 to 400	400
<u>x</u> 0~ _ v	ro			3	, K-	

CORNER JUNCTION dimensions

	Corner Junction Size	Downstream width (mm)	Nominal Step (mm)	INLET Depth, Di (mm)	OUTLET Depth, Do (mm)	Box gutter A contraction range (mm)	Box gutter B width (mm)
	CJN-200-R	197	50	180	230	200	200
	CJN-300-R	297	60	215	275	200 to 300	300
Ő	CJN-400-R	397	70	230	300	300 to 400	400
21	-O1					\mathcal{O}_{1}^{\sim}	